A	virtual mass coefficient, 46
A.L. C L.MDC 101 104	Buoyancy
Adaptive control, MPC, 191–194	in fluidized bed, 116–117
Algorithms, MPC	in multiphase systems, 22–23
control algorithm, 135	from pressure gradients, 121–122
description, 136	Business concepts, in multiscale MPC,
GPC, 145	195–196
robust stability constraints, 182–184	
stability constraints, 181–182	C
Asymptotic stability, MPC, 146	C
	Chance constraint, MPC, 197
В	Closed-loop stability
	for MPC nonminimum-phase process,
Behavior	157–159
f behavior, 18–22	for MPC performance, 185–186
hysteresis, 25–26	sensitivity, 167–169
MPC system, 134, 156–157	Coefficients
BIBO stability, see Bounded-input-	dispersion coefficient, 22, 41, 45–46, 53–
bounded-output stability	58, 63
Bounded dispersions	virtual mass coefficient, 22, 41-42, 46, 58
bubble columns, 91–100	61–63
fluidized beds, 91, 99	Constraints, MPC
mathematical model, 73–90	chance constraint, 197
model parameter estimation, 90–91	end constraints, 178, 197
Bounded-input-bounded-output stability,	inequality constraints, 142–145
149–150	input constraints, 178, 183
Bubble columns	input move constraints, 177, 183
bounded dispersions, 91–92	output constraints, 178
bubble rise velocity effect, 94	robust stability constraints, 182–184
column diameter effect, 96	softenend state constraints, 183
dispersion coefficient, 45–46	stability, 181–182
dispersion effect, 95	system constraints, 169–170
dispersion height effect, 96–98	Continuous feedback, for MPC nonlinear
f behavior, 21–22	process, 162–163
gas density effect, 94	Continuous stirred tank reactor, 148–149
gas phase, 2–3	Contraction
heterogeneous regime, 3	solid-liquid fluidized bed, 110
hold-up parameter effect, 95	three-phase fluidized beds, 105–109,
mathematical model, 73–90	111–113
model vs. experimental values, 99–100	Control algorithm, in MPC conception, 135
Sparger resistance effect, 92–94	Control theory, classical, and MPC,
terminal rise velocity, 42–44	135–136
unbounded bed analysis, 68-69	CSTR, see Continuous stirred tank reactor

D	Finite-impulse-response model, 138–139, 177–181
Dimensionality, in multiscale MPC, 195	Finite prediction horizon, 163–164
Dispersed phase, solid-liquid fluidized	FIR, see Finite-impulse-response model
beds, 3	Fluid density, in fluidized beds, 48-49
Dispersion coefficient	Fluidized beds
bubble columns, 45–46	bounded analysis, 100–103
in fluidized beds, 41, 53–58	bounded dispersions, 91
in gas-liquid bubble columns, 63	dispersion coefficient, 41
in multiphase systems, 22	elasticity, 26
Dispersions	elastic wave velocity, 30-32
bounded, 73–100	f behavior, 18–20
unbounded, 6–22	force balance equations, 27
Disturbance, MPC prediction, 177	gas-solid, see Gas-solid fluidized beds
DMC, see Dynamic matrix control	model vs. experimental values, 99
Drag force, in multiphase systems, 23	nomenclature, 122–127
Dynamic matrix control, MPC systems, 159	particle forces, 116–122
Dynamic programming, MPC, 196–197	slip velocity, 41
	solid-liquid, see Solid-liquid fluidized
	beds
${f E}$	stability vs. instability, 26–27
	three-phase, 103–113
Elasticity, fluidized beds, 26, 28–29	transition, 28–29
Elastic wave velocity equations, 30–32	unbounded analysis, 65, 68–69, 100–103
End constraints, MPC, 178, 197	virtual mass coefficient, 41–42
Energy dissipation, in fluidized bed,	voidage propagation velocity, 29–30
117–121	Fluid viscosity, in fluidized beds, 47–48
Engineering concepts, in multiscale MPC,	Force, particle in fluidized bed buoyancy, 116–117
195–196	energy dissipation, 117–121
Equations	pressure gradients, 121–122
bubble column mathematical model,	Fragility, MPC systems, 165–169, 184–185
73–75	11aginty, Wif C systems, 103–103, 104–103
elastic wave velocity, 30–32	
linear stability continuity, 82–84	
linear stability momentum, 84–88	G
solid–liquid fluidized beds, 7–12	
Expansion	Gas bubbles
solid-liquid fluidized bed, 110	diameter, 61
three-phase fluidized beds, 105–109, 111–113	rise velocity, 94
111–113	solids-free liquid wake, 110–111
	wake volume, 108
	Gas density, in bubble columns, 94
${f F}$	Gas-liquid bubble columns
	bubble diameter effect, 61
f behavior	dispersion coefficient effect, 63
bubble columns, 21–22	hysteresis behavior, 26
fluidized beds, 18–20	Richardson–Zaki index effect, 63–65
Feedback, continuous, MPC, 162–163	slip velocity, 44–45
FG stability, see Finite-gain stability	stability analysis, 36–40
Finite-gain stability, 150–152, 155	stability maps, 61

terminal rise velocity effect, 61 unbounded dispersions, 18 virtual mass coefficient effect, 61-63 Gas phase, in bubble columns, 2-3 Gas-solid fluidized beds dispersion coefficient effect, 53-58 fluid density effect, 48-49 fluid viscosity effect, 47-48 particle density effect, 49-53 particle diameter effect, 53 particle phase, 3 stability analysis, 24-26, 32-36 stability maps, 46–47 unbounded dispersions, 15-18 virtual mass coefficient effect, 58 Generalized predictive control, for unconstrained MPC algorithm, 145 Global asymptotic stability, MPC, 147 GPC, see Generalized predictive control

L

Linearization, solid-liquid fluidized beds, 12–15
Linear models, MPC, 170–172, 189
Linear-quadratic regulator, and MPC, 136–137
Linear stability analysis, bubble column batch operation, 88
boundary condition linearization, 81–82 continuity equations, 82–84
momentum equations, 84–88
Y direction averaging, 78–81
Liquid-liquid spray columns, unbounded dispersions, 18
Liquids, terminal bubble velocity, 43–44
LQR, see Linear-quadratic regulator

H

Heavy oil fractionator, stability, 165
Heterogeneous regime, bubble columns, 3
Heuristic models, three-phase fluidization,
105–109
Hold-up pressure correlation model,
115–116
Hydrodynamic models, for fluidized bed stability, 26
Hysteresis behavior
gas—liquid bubble columns, 26
gas—solid fluidized beds, 25–26

I

Inequality constraints, absence in MPC, 142–145
Input constraints, MPC, 178, 183
Input move constraints, MPC, 177, 183
Input-output models, MPC, 189
Integrators, MPC systems, 159–161

K

Kinematic wave velocity, stability, 27

M

Mathematical model, bubble columns boundary conditions, 75-77 cylindrical columns, 89-90 equations, 73-75 linear stability analysis, 77-88 MIMO, see Multi-input-multi-output system Model parameters bounded dispersions, 90-91 bubble columns, 42-46 fluidized beds, 41-42 Model predictive control algorithms, 135-136, 145, 181-184 in classical control theory, 135-136 conceptual unification, 187-188 constraints, 169-170, 197 dynamic programming, 196-197 enhancements, 198 fragility, 165-169, 184-185 industrial origins, 134-135 integrators, 159-161 linear model, 170-172 and LQR, 136-137 model uncertainty, 165 multiscale MPC, 194-196 nonlinearity, 162-164 nonlinear process model, 140, 172-174 nonminimum phase, 157-159 on-line optimization, 156-157

performance, 185–186 process models, 188–194 as real-time problem, 133–134 robust performance, 185–186 robust stability, 176–184 short horizons, 157–159 stability proof, 174–176 stability regions, 160–161 stochastic disturbance model, 140	MPC systems, 162–164 Nonminimum phase, MPC, 157–159 O On-line optimization, MPC, 156–157, 177– 181, 186, 191–194 Optimization paradigms, in multiscale
stochastic objective function, 140–142 system behavior, 134 theory development, 198–199 traditional formulation, 137–139	MPC, 196 Output constraints, softened, MPC, 178
unstable process model, 140 unstable units, 159–161	P
without inequality constraints, 142–145 Models bubble columns, 73–90 FIR, 138–139, 177–181 for fluidized bed stability, 26 hold-up pressure correlation, 115–116 MPC input-output, 189 linear model, 170–172, 189 nonlinear process, 140, 172–174, 189 process, 188–194 state-space, 189–191 stochastic disturbance, 140 unstable process, 140 pressure–hold-up correlation, 115–116 three-phase fluidization, 105–109 Moving horizon-based state estimation, MPC models, 189–191 MPC, see Model predictive control Multi-input–multi-output system, for MPC, 177–181 Multiphase systems bounded vs. unbounded analysis, 100–103	Particles, in fluidized beds buoyancy, 116–117 density, 49–53 diameter, 53 energy dissipation, 117–121 phase, 3 pressure gradients, 121–122 Performance, MPC, 185–186 Phase transition, in fluidized beds, 28–29 p-norms, 149 Point of transition, solid–liquid fluidized bed, 110 Pressure gradients in fluidized bed, 121–122 hold-up correlation model, 115–116 in multiphase systems, 22 Process models, MPC, 140, 172–174, 188–194 Process state MPC output prediction, 177 MPC prediction, 183 MPC SISO, 137–138
buoyancy force, 22–23 dispersion coefficient, 22	R
drag force, 23 pressure, 22 regime transition, 23–24 virtual mass coefficient, 22	Real-time problem, MPC, 133–134 Regime transition, theoretical analysis, 23–24 Reynolds averaging, for solid–liquid fluidized beds, 8–9
Nonlinear process MPC models, 140, 172–174, 189	Richardson–Zaki index, in gas–liquid bub- ble columns, 63–65 Robust stability, MPC constraint predic- tion, 183–184

S	closed-loop stability, 157–159, 167–169, 185–186
Short horizons, MPC, 157-159	definition, 145-146
Single-input-single-output process, in MPC,	FG stability, 150-152
137–138	finite-gain-initial conditions stability,
SISO, see Single-input-single-output	155
process	global asymptotic stability, 147
Slip velocity	heavy oil fractionator, 165
fluidized beds, 41	input dependence, 153-155
gas-liquid bubble columns, 44-45	inputs for characterization, 152-153
Softenend state constraints, MPC, 183	linear model, 170-172
Software, for multiscale MPC, 196	nonlinear model, 172-174
Solid-liquid fluidized beds	nonlinear process, 162–163
contraction-expansion prediction,	<i>p</i> -norms, 149
111–112	proof and practice, 174-176
dispersion coefficient effect, 53-58	regions, 160–161
equations, 7–12	robust stability, 176–184
expansion and contraction, 110	role in system, 155–156
fluid density effect, 48–49	uniform asymptotic stability, 147
fluid viscosity effect, 47-48	uniform stability, 146
heterogenous-heterogeneous stability,	unstable CSTR, 148–149
112–113	unstable system, 147–148
homogeneous-heterogeneous stability,	multiphase systems, 23–24, 100–103,
112	114–115
homogeneous-homogeneous stability,	solid-liquid fluidized bed maps, 46-60
113	solid-liquid fluidized beds, 32–36,
linearization, 12–15	112–113
particle density effect, 49–53	State-space models, MPC, 189–191
particle diameter effect, 53	Steady-state conditions, solid–liquid fluid-
particle phase, 3	ized beds, 12–15
stability analysis, 32–36	Stochastic disturbance model, MPC, 140 Stochastic objective function
stability maps, 46–47	available measurements, 141
steady-state conditions, 12	constraints, 141
virtual mass coefficient effect, 58	MPC formulation, 140–141
Solids-free liquid wake	sampling period, 141–142
gas bubbles, 110–111	sampling period, 141–142
three-phase fluidized bed model, 107–108	
Sparger pressure drop, estimation, 90–91	_
Sparger resistance, in bubble columns, 92–94	T
Stability	Terminal rise velocity, bubbles
bubble columns, 42-46, 78-88	in contaminated liquids, 43-44
fluidized beds, 26-27, 41-42, 91	estimation, 42
gas-liquid bubble column maps, 61-65	in gas-liquid bubble columns, 61
gas-liquid bubble columns, 36-40	in pure liquids, 43
gas-solid fluidized bed maps, 46-60	Theory
gas-solid fluidized beds, 24-26, 32-36	MPC, 198–199
MPC	MPC classical control, 135-136
asymptotic stability, 146	Three-phase fluidized beds
BIBO stability, 149–150	characterization, 103–104

contraction–expansion prediction, 111–113 definition, 3–4 heuristic models, 105–109 parameter effects, 110–111

U

Unbounded dispersions
bubble columns, 21–22
criterion, 6–7
fluidized beds, 18–20
gas–liquid bubble columns, 18
gas–solid fluidized beds, 15–18
liquid–liquid spray columns, 18
solid–liquid fluidized beds, 7–15
Uniform asymptotic stability, MPC, 147
Uniform stability, MPC, 146
Unstable process model, MPC, 140
Unstable system, MPC with bounded output, 147–148
Unstable units, MPC systems, 159–161

V

Velocity, in beds and columns slip velocity, 41, 44–45 terminal rise velocity, 42–44, 61 voidage propagation velocity, 29–30 wave velocity, 27, 30–32 Virtual mass coefficient bubble columns, 46, 61–63 fluidized beds, 41–42, 58 in multiphase systems, 22 Voidage propagation velocity, fluidized beds, 29–30

\mathbf{W}

Wake model, three-phase fluidized beds, 105–109 Wave velocity, in beds and columns elastic, equations, 30–32 kinematic, stability, 27